Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 750-757, 2019.
Article in Chinese | WPRIM | ID: wpr-777499

ABSTRACT

The present study is to establish a method for simultaneous determination of 50 kinds of pesticides in Angelicae Sinensis Radix by using liquid chromatography tandem mass spectrometry. The forbidden,restricted and customary pesticides were picked out as detecting indexes according to the principals of risk management. The factors affecting the extraction,purification,and detection were optimized,and the final condition was established as follows: the samples were extracted with acetonitrile. The separation of target compounds were performed by liquid column,and quantitative analysis was carried out by LC-MS/MS with MRM model. The calibration curves were linear in the range of 1-100 μg·L~(-1) with correction coefficients of greater than 0. 990. The recoveries of more than 93. 9%pesticides were ranged from 60% to 140% at three spiked levels. The detecting indexes in the method cover most forbidden and restricted pesticides,which is meaningful for the safety supervision of the Angelicae Sinensis Radix. With the advantage of rapidness and accuracy,this method can be used for routine determination of multi-pesticides in Angelicae Sinensis Radix.


Subject(s)
Chromatography, Liquid , Pesticide Residues , Pesticides , Chemistry , Tandem Mass Spectrometry
2.
China Journal of Chinese Materia Medica ; (24): 4621-4627, 2016.
Article in Chinese | WPRIM | ID: wpr-231011

ABSTRACT

This study intends to explore the potential resource-orientedutilization value of the flower of Sophora flavescents by analyzing alkaloids and flavonoids in the flower of S. flavescens from Shanxi province. This study established a rapid UPLC-TQ-MS/MS method that is used for determination of seven alkaloids and seven flavonoids in the flower of S.flavescens. The different florescences all have the seven detected alkaloids such as cytisine, oxy-matrine, oxy-sophocarpine, sophoridine, N-methylcytisine, matrine, sophocarpine.The total contents of detected alkaloids are as follows: flower buds 1.47%, primal flowers 1.34%, full bloomed flowers 1.17%, faded flowers 1.01%. The top three contents of alkaloids are N-methylcytisine , oxy-sophocarpine and oxymatrine, accounting for about 83% of the total amount of detected alkaloids. All the samples in different florescences have the seven detected flavonoids such as rutin, luteolin, quercetin, isoquercitrin, trifolirhizin, kurarinone, and kushenol I. The total contents of detected alkaloids are as follows: flower buds 495.2 μg•g⁻¹, primal flowers 313.7 μg•g⁻¹, faded flowers 224.2 μg•g⁻¹, full bloomed flowers 193.0 μg•g⁻¹. The content of luteolinis relatively higher than other detected flavonoids, accounting for about 89%-94% of the total amount of detected flavonoids. The results indicated that the flower of S.flavescens could be an important material resource to obtain the resourceful alkaloids. This result can provide scientific basis for resource-oriented utilization and industrial development of the flower of S. flavescens.

3.
China Journal of Chinese Materia Medica ; (24): 4670-4674, 2016.
Article in Chinese | WPRIM | ID: wpr-231004

ABSTRACT

Shanxi, a traditional production area to produce genuine Astragali Radix of high quality, has experienced major changes in the pattern of resources. This area once accounted for half of Astragali Radix industry, but now only serves as the largest supply area of traditional wild Astragali Radix. Furthermore, the strategic position of Shanxi Astragali Radix industry will become more prominent and more important to economic and social development in face of the diversity of market demands, especially for the strong demands of high-end Astragali Radix. In addition, Astragalus industry involves the simultaneous development of the first, second and tertiary industries in many areas, and it is typical and representative in the traditional Chinese medicine industry development. However, the application and industrial development of Shanxi Astragali Radix have been restricted due to the problems such as blind promotion of transplanting cultivation technology, and lack of science and technology including efficacy investigation, safety evaluation, standardization and controllability studies. Therefore, we would analyze the production history, resource structure, the current situation and progress of industry development, scientific research foundation and existing problem in this paper, and put forward countermeasures for development and technical innovation in order to make Astragali Radix industry bigger and stronger through innovation-driven and make benefits for demos. This thought provides a reference for the exploratory development of other large varieties of Chinese medicinal materials.

4.
China Journal of Chinese Materia Medica ; (24): 3265-3271, 2016.
Article in Chinese | WPRIM | ID: wpr-307166

ABSTRACT

According to the research strategy of resource chemistry of Chinese medicinal materials and Chinese medicinal resources recycling utilization, this study intends to explore the potential resource-oriented utilization value of the seed of Sophora flavescens by contrasting with its kindred plant S. alopecuroides. This study established a rapid UPLC-Q-TOF-MS/MS and UPLC-TQ-MS/MS method to determine the alkaloids in the seed of S. flavescens. Results of UPLC-Q-TOF-MS/MS analysis showed that the alkaloids in the seed of S. flavescens were highly similar with S. alopecuroides.In the determination of 7 kinds of alkaloids, the total content was 11.203 and 15.506 mg•g⁻¹ in the seed of S. flavescens and S. alopecuroides, respectively. The content of oxymatrine, oxysophocarpine and sophoridine is high in the seed of S. flavescens. The results indicated that the seeds of S. flavescens. could be an important material resource to obtain alkaloids.

5.
China Journal of Chinese Materia Medica ; (24): 3234-3238, 2013.
Article in Chinese | WPRIM | ID: wpr-238617

ABSTRACT

To explore the status of the resources of Astragali Radix, a survey on its germplasm resources was carried out. Some conclusions can be drawn for Astragali Radix: the major source is the cultivated Astragalus mongolicus. The new major cultivation areas for A. mongolicus and A. membranaceus are Shandong and Gansu province. The semi-wildly planting model in Shanxi province maintains the genuine trait of Astragali Radix, but its yield is limited, and now a combination model has been developed. The major problems for Astragali Radix are the selection of planting sites, the rot root and difficulty in collecting and processing. Several developmental proposals for Astragali Radix were put forward including rational distribution of planting areas, establishment of standard system, development and standardization of producing technologies.


Subject(s)
Astragalus Plant , Astragalus propinquus , China
6.
China Journal of Chinese Materia Medica ; (24): 3520-3524, 2013.
Article in Chinese | WPRIM | ID: wpr-291334

ABSTRACT

Five compounds were obtained from the stems and leaves of Sophora flavescens Ait. and ten compounds were obtained from the roots of S. flavescens by various chromatography methods including silica gel column chromatography and preparative HPLC. Their structures were identified on the basis of spectroscopic methods including 1H-NMR, 13C-NMR and ESI-MS, as corchionoside C (1), syringing (2), 2'-deoxythymidin (3), coniferin (4), benzyl O-beta-D-glucopyranoside (5), piscidic acid (6), trifolirhizin (7), kurarinone (8), trifolirhizin-6'-monoacetate (9), sophoraflavanone G (10), isoxanthohumol (11), noranhydroicaritin (12), 4'-methoxyisoflavone-7-O-beta-D-apiofuranosyl-(1 --> 6)-beta-D-glucopyranoside (13), kushenol O (14) and 6"-beta-D-xylopyranosylgenistin (15). Compounds 1-6 were isolated from the Sophora genus for the first time.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Chemistry , Flavanones , Chemistry , Flavonoids , Chemistry , Glucosides , Chemistry , Heterocyclic Compounds, 4 or More Rings , Chemistry , Mass Spectrometry , Molecular Structure , Plant Roots , Chemistry , Sophora , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL